
Systems programming

Week 2 – Lab 3

 Client-Server and ncurses

In this laboratory students will implement a simple distributed system, where the clients
controls moving characters that show on the server screen.

Clients will send movement orders to the server and the server updates the position of
the various characters on a windows.

In order to represent symbols in the screen the ncurses library will be used.

1 Ncurses
Ncurses is a library that allow the the reaction of text bases user interfaces. Ncurses

provides an API to read from the keyboard and write with various degrees of control in

the screen.

1.1 Ncurses installation

To use this library it is necessary to install it on Linux or mac OS X

1.1.1 Linux

The ncurses installation in Linux is straightforward and depend on the Linux version.

Fir Ubuntu it is necessary to issue the following commands

sudo apt-get install libncurses5-dev libncursesw5-dev

for other distributions the packages to install are different, as explained in the following

page:

https://www.cyberciti.biz/faq/linux-install-ncurses-library-headers-on-
debian-ubuntu-centos-fedora/

1.1.2 MAC OS X

To install the ncurses library in MAC OS X it is necessary to use the brew package

manager for MAC OS X:

https://www.cyberciti.biz/faq/linux-install-ncurses-library-headers-on-debian-ubuntu-centos-fedora/
https://www.cyberciti.biz/faq/linux-install-ncurses-library-headers-on-debian-ubuntu-centos-fedora/

https://brew.sh/

after installing brew it is necessary to type the following command in the terminal:

brew install ncurses

1.2 Ncurses tutorial and documentation

The following site presents a detailed documentation of the various functions provided

by ncurses:

https://invisible-island.net/ncurses/ncurses.html

https://invisible-island.net/ncurses/ncurses-intro.html

https://tldp.org/HOWTO/NCURSES-Programming-HOWTO/

1.3 Examples

The provides example files demonstrate the use of the fundamental ncurses functions.

To compile each example and all other programs that use ncurses it is necessary to use

the -lncurses argument in the gcc

ncurses-example-1.c This program reads the key pressed by the user. If the user

presses one of the key arrows it prints the direction. If any other key was presses it

prints the corresponding character .

Initscr();

cbreak();

keypad(stdscr, TRUE);

noecho();

Initialization of the ncurses library

From this point forward printfs / fgets

stop working and all interaction with the

screen/keyboard is done using the

ncurses functions

ch = getch(); Get the pressed key. If the user keeps the

key presses this function does not block

and returns immediately

switch (ch) { If the user presses a regular letter, digit or

https://tldp.org/HOWTO/NCURSES-Programming-HOWTO/
https://invisible-island.net/ncurses/ncurses-intro.html
https://invisible-island.net/ncurses/ncurses.html
https://brew.sh/

 case KEY_LEFT:

 break;

 case KEY_RIGHT:

 break;

 case KEY_DOWN:

 break;

 case KEY_UP:

break;

}

symbol, the ch variable contains the

corresponding ASCII code.

In the case of special keys it is necessary

to compare the variable with use specific

constants:

• KEY_LEFT, KEY_RIGHT

• KEY_UP, KEY_DOWN

mvprintw(0,0,

 "%d :%c key was pressed",

 n, ch);

The mvprintw function receives a string

and further arguments like the printf,

but allows to write such string in a specif

position of the screen.

The first arguments correspond to the

location where this function starts to write

the string.

ncurses-example-2.c – this program starts by drawing a windows and then draws a

moving x on such windows.

initscr();

cbreak();

keypad(stdscr, TRUE);

noecho();

Initialization of the ncurses library

From this point forward printfs / fgets

stop working and all interaction with the

screen/keyboard is done using the

ncurses functions

WINDOW * my_win = newwin(

 WINDOW_SIZE, WINDOW_SIZE,

Creates and draws a windows starting at

position 0, 0 and with dimension of

 0, 0);

box(my_win, 0 , 0);

wrefresh(my_win);

WINDOW_SIZE x WINDOW_SIZE

The my_win variable will be used in other

functions to write into this window These

functions use relative (inside the window)

coordinates

wmove(my_win, pos_y, pos_x);

waddch(my_win,ch| A_BOLD);

These functions write one character on a

specific position inside the my_win

window.

The wmove places the cursor at a specific

position inside the my_win window.

The waddch writes the character ch inside

my_win at the previously defined cursor

position

 wrefresh(my_win); After writing on a windows, it is necessary

to call wrefresh to update the screen and

show all the changes.

2 Client-server character remote control
In these exercise students will implement a system composed of a server and multiple

clients that communicate using FIFOS.

The server will be similar to ncurses-example-2.c but will show on the screen various

characters controlled by other programs. The movement of these characters will be

received through a FIFO.

Some characters will be controlled by the user (using a program similar to ncurses-

example-1.c), other characters will be controlled by a random movement generator.

The skeleton files for various program are available on the exercise-1 directory:

• server.c

• human-control-client.c

• machine-control-client.c

When the server starts the server, he will wait for clients to start sending messages

trough a FIFO.

Every client that wants to interact with the server needs to send a starting message that

defines what character sch clinet will control, from this point forward the client will send

messages stating what direction the character will move (left, right, up, down).

The server will receive each movement message and update the corresponding

character on the screen.

3 Exercise 1
This version of the system will only allow one client (either human or machine) to run at

the same time.

Students should follow the next steps to implement the exercise.

The various places to write code are identified in the supplied files.

3.1 TODO 1 (remote-char.h)

The first step is the definition of the messages that will be exchanged between the client

and the server.

This should be done on remote-char.h file.

Take attention that there are two types of messages

• connection - the one sent when first connecting

• movement - the one that sends the movements.

 Both types of messages should send the character selected by the user and the

movement messages should contain the direction (UP, DOWN, LEFT, RIGHT).

3.2 TODO 2 (remote-char.h)

Since the clients and server will interact using a FIFO it is necessary to define such

name, and make it available to all programs.

Define a constant with the name of the FIFO in the remote-char.h file. The the FIFO

should be created in the /tmp directory.

3.3 TODO 3 (server.c)

The server should create and open a FIFO for reading

implement the code to create the FIFO (if it does not exist) and open it for reading.

3.4 TODO 4 (human-control-client.c)

The human-control-client should create and open a FIFO for writing.

implement the code to create the FIFO (if it does not exist) and open it for reading.

After implementing TODO_4 it is now possible to run the server and this client on

different windows and understand if they are opening the same FIFO. If this happens

we can now start to send data….

3.5 TODO 5 (human-control-client.c)

After opening the FIFO for writing the human-control-client.c should read from the

keyboard what character the user wants to control and send such information to the

server.

implement the code to read a character form the keyboard.

This should be done before initializing ncurses otherwise we need to use ncurses

keyboard reading functions.

3.6 TODO 6 (human-control-client.c)

After reading the character the human-control-client.c should send the selected

character to the server in a connection message.

Declare a variable of the message type (step TODO_1) and initialize with the correct

information:

• message type (connection),

• selected character.

Write the message into the FIFO.

3.7 TODO 7 (server.c)

Implement on the server the code to read messages from the client.

On the server.c read a message from the FIFO.

3.8 TODO 8 (server.c)

Verify if the message read is of the connection type and extract from it the character,

store it in a variable, define the initial position of the character, and draw it on the

screen. The initial character position can be for instance (WINDOW_SIZE/2 ,

WINDOW_SIZE/2).

To store the character and its positions use the already declared variables:

• ch for the character;

• pos_x and pos_y for the position.

3.9 TODO 9 (human-control-client.c)

In the human-control-client.c, after reading the pressed key, verify if it is an arrow and

fill the message to be sent to the server:

• assign the movement message type

• assign the direction of the messages

3.10 TODO 10 (human-control-client.c)

On the human-control-client, send the movement message to the server.

3.11 TODO_11 (server.c)

On the server verify if the message received on TODO_7 is of type movement.

If the message is of movement type, erase the character from the old position, update

the new character position, and redraw it on the screen.

4 Exercise 2
Modify the machine-control-client.c file with the correct code for it to connect to the

server and control it own character. Follow the sets done in the human-control-clinet.c

so that the FIFO connection and message transfer is done correctly.

After implementing the three programs try to execute them. You will need to terminate

the server (Ctrl-C) to try a different client.

5 Exercise 3
The server implemented in exercise 1 works correctly only when a single client sends

messages. If two (or more) clients send simultaneously messages to the server, only

one character moves.….. It would be nice if multiple characters moved (one for each

client).

This happens because the serve only stores information about one character (the ASCII

code on the ch variable and one position on the pos_x and pos_y), but receives

movement messages from the various clients.

To allow the server to accept messages from multiple clients and have multiple

characters moving on the screen, it is necessary to change the server so that it stores

one character information (ch, pos_x and pos_y) for each client.

Modify the implemented server following the next steps in order to allow multiple

characters at the same time.

5.1.1 STEP 1

Declare one datatype that will store each character information: the ASCII code, the x,

y.

5.1.2 STEP 2

Declare an array of structures (declares in STEP 1) that will contain the information

about the characters of the various clients.

5.1.3 STEP 3

Add one new structure to the array whenever the server receives a message of type

connection (replace the code of TODO_8)

5.1.4 STEP 4

Whenever the server receives a message of type movement, the server should search

for the corresponding entry on the array, calculate the new the position of such

character and update the screen (replace the code of TODO_11).

